Indução numa espira quadrada
|
|
Considere-se uma espira quadrada de lado 2a, percorrida por uma corrente de intensidade I.
O campo criado por um elemento de espira dl em torno de M, num ponto P, é dado por (lei de Biot-Savart):
dB = k.dl ^ MP / MP3
com k = µ0.I / 4π.
O cálculo da indução magnética no eixo da espira leva em conta simetrias relativamente simples.
Verifique que para um ponto do eixo situado à distância x do plano da espira, temos:
Este applet permite estudar o cálculo de indução num plano horizontal contendo o eixo da espira (plano a vermelho no esquema desenhado
no canto superior esquerdo do applet).
Por razões de simetria, a indução é contida no plano que contém o ponto P, pelo que B = Bx.i + By.j.
É necessário para cada ponto do plano, calcular as contribuições de Bx e de By de cada lado do quadrado.
Por cada ponto P, é preciso calcular 6 integrais (a contribuição de lados horizontais de Bx é nulo).
Este programa permite visualizar a forma das linhas de campo magnético num plano que contém o eixo das bobinas.
Os integrais são calculados numericamente pelo método de Simpson.
A intensidade da cor das linhas de campo é proporcional à intensidade de campo local (campos intensos em vermelho vivo, campos fracos a preto).
Se se comparar a forma das linhas de indução obtidas com as de uma espira circular, verifica-se uma grande semelhança:
a forma exacta de uma espira tem pouca influência na indução criada.
Ao clicar na área do applet, o programa desenha o vector indução magnética e mostra (em unidades arbitrárias)
o valor de indução magnética no ponto seleccionado.
Simulation Numérique de Jean-Jacques ROUSSEAU
Faculté des Sciences exactes et naturelles Université du Maine - Le Mans
Traduzido e adaptado para a Casa das Ciências
por Manuel Silva Pinto e Alexandra Coelho em Março de 2011
|
|